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Eigenmodes for the quadratic-finite-element method (QFEM) are expressed as a
linear combination of two conventional semi-discrete Fourier modes. Each of these
Fourier modes moves at a different phase speed, but both modes have the same group
velocity. This representation of the QFEM eigenmodes clarifies the significance of
the negative phase speeds that naturally arise as part of the conventional analysis.
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1. INTRODUCTION

Finite-element approximations to hyperbolic partial differential equations usually employ
piecewise linear elements. The use of piecewise quadratics and higher-order elements has
been discouraged by their algorithmic complexity and by confusion about the susceptibility
of such methods to errors in the smallest scales resolvable on the numerical mesh. This note
attempts to clarify some of the confusion involving the wave-propagation characteristics
of solutions to semi-discrete quadratic-finite-element approximations to the one-way wave
equation

∂ψ

∂t
+ c

∂ψ

∂x
= 0 (1)

on the periodic domainx ∈ [0, L].
As in [1], let the x-dependence of the solution to (1) be approximated by quadratic

Lagrange interpolating polynomials such that

φ(x, t) =
N∑

n=0

a2n(t)ϕ
e
2n(x)+

N∑
n=1

b2n−1(t)ϕ
m
2n−1(x). (2)
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Hereϕe
j is an “endpoint” expansion function defined as

ϕe
j (x) =

{
1− 3 |x − xj |

21x + 1
2

( x− xj

1x

)2
, if |x − xj | ≤ 21x,

0, otherwise,

ϕm
j is the “midpoint” expansion function

ϕm
j (x) =

{( x − xj−1

1x

)(
2− x − xj−1

1x

)
, if |x − xj | ≤ 1x,

0, otherwise,

andxj = j1x for j = 0, 1, . . . ,2N. The standard Galerkin finite-element approximation
to (1) yields two families of equations for the evolution of the expansion coefficients. The
equations centered at the endpoint nodes are

−ȧj−2+ 2ḃ j−1+ 8ȧj + 2ḃ j+1− ȧj+2

10
+ c

(
bj+1− bj−1

1x
− aj+2− aj−2

41x

)
= 0, (3)

whereas those centered on the midpoints are

ȧ`−1+ 8ḃ` + ȧ`+1

10
+ c

(
a`+1− a`−1

21x

)
= 0. (4)

In the preceding, the indices ona andb are periodic with period 2N such that

a2N = a0, b2N+1 = b1.

As is widely appreciated, no single semi-discrete Fourier mode of the formφ j (t)=
ei (k j1x−ωt) will simultaneously satisfy (3) and (4). The solution for the nodal values may,
however, be expressed in the form

aj (t) = eik( j1x−c∗t) b`(t) = raeik(`1x−c∗t), (5)

wherera is the ratio of the amplitude at a midpoint node to the amplitude at an endpoint
node and, loosely speaking,c∗ is a phase speed [1–4]. Letθ = k1x, and substitute (5) into
(3) and (4) to obtain

1

5
(8− 2 cos 2θ + 4ra cosθ)c∗ − c

θ
(4ra sinθ − sin 2θ) = 0

and

1

5
(cosθ + 4ra)c

∗ − c

θ
sinθ = 0.

Solutions to this system of two equations in the two unknownsc∗ andra may be expressed
in the form

c∗

c
= sinθ

θ(1+ sin2 θ)

(−2 cosθ ± (9+ sin2 θ)1/2
)

(6)
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FIG. 1. Normalized phase speedc∗/c and amplitude ratio,ra, plotted as a function of horizontal wavenumber
for the positive (P) and negative (N) roots of (6).

and

ra = 1

4

(
5

c

c∗
sinθ

θ
− cosθ

)
. (7)

The relative phase speedc∗/c and the corresponding values ofra are plotted as a function
of horizontal wavenumber in Fig. 1.

Two difficulties arise in connection with the interpretation of these results. The first, which
misled this author [1] as well as previous researchers [5, 6], is the apparent presence of two
distinct sets of solutions, “physical” and “computational” modes associated, respectively,
with the positive and negative roots in (6). A more correct description was provided by
Gresho and Lee [3] (see also [4]), who recognized that only a single set of modes is required
to span the solution space defined by the linear system of ordinary differential equations
(3)–(4). Unfortunately, [3, 4] also incorrectly suggest that those modes associated with
the negative root can be dismissed as extraneous. An essentially correct interpretation was
offered by Cullen [2], who recognized that none of the solutions is extraneous, because the
set of solutions given by the positive root in (6) is identical to the set of solutions given by
the negative root.

As a preliminary step to the subsequent analysis, we derive the relation between the
two sets of solutions stated in [2, 3]. Let those quantities related to the positive root in
(6) be denoted by a subscript p and those related to the negative root be denoted by a
subscript n. Also letω∗ = kc∗ be the frequency of the quadratic-finite-element-method
(QFEM) solution. Elementary trigonometric identities imply that fork∈ [0, π/1x], i.e.,
for the positive wavenumbers resolvable on the numerical grid,

ω∗p(k) = ω∗n(k− π/1x) and rap(k) = −ran(k− π/1x), (8)

and fork ∈ [−π/1x, 0],

ω∗p(k) = ω∗n(k+ π/1x) and rap(k) = −ran(k+ π/1x). (9)
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Now consider a negative-root mode with endpoint valuesaj and midpoint valuesb`.
Consistent with (2), the indicesj are even and̀ are odd. Using (8),

aj = ei [(k−π/1x) j1x−ω∗n(k−π/1x)t ] = (−1) j eik j1xe−iω∗p(k)t = ei [k j1x−ω∗p(k)t ],

and

b` = ran(k− π/1x)ei [(k−π/1x)`1x−ω∗n(k−π/1x)t ]

= −rap(k)(−1)`eik`1xe−iω∗p(k)t

= rap(k)e
i [k`1x−ω∗p(k)t ],

which demonstrates that fork∈ [0, π/1x] the negative-root mode with wavenumberk−π/
1x is identical to the positive-root mode with wavenumberk. Similarly, fork∈ [−π/1x, 0],
the negative-root mode with wavenumberk+π/1x is identical to the positive-root mode
with wavenumberk.

We now arrive at the second difficulty in interpreting our results: How can both of the
phase speeds given by the two curves in Fig. 1 simultaneously describe the behavior of
individual solutions to (3)–(4)? The answer lies in the fact that solutions of the form (5)
are not conventional semi-discrete Fourier modes that propagate without changing shape
between each pair of adjacent nodes. Instead, (5) is a semi-discrete approximation to a
function of the formg(x)ei (kx−ωt), where the factorg(x) is introduced to account for the
extra spatial dependence associated with the midpoint-node coefficientra.

The reason that two nonspurious phase speeds are obtained from (6) can be made more
apparent by reexpressing the QFEM eigenmodes as the sum of twoconventionalsemi-
discrete Fourier modes traveling at different speeds and moving in opposite directions. As
a first step, (5) is written in the alternative form

q̂n(t) = 1

2

[
(1+ ra)+ (−1)n(1− ra)

]
ei [kn1x−ω∗(k)t ], n = 0, 1, . . . ,2N. (10)

Even values ofn give the nodal valuesaj ; odd values yield theb`. Then for a positive-root
eigenmode,

q̂n(t) =
(

1+ rap

2

)
ei [kn1x−ω∗p(k)t ] +

(
1− rap

2

)
ei [(k−π/1x)n1x−ω∗p(k)t ]

=
(

1+ rap

2

)[
ei [kn1x−ω∗p(k)t ] +

(
1− rap

1+ rap

)
ei [(k−π/1x)n1x−ω∗n(k−π/1x)t ]

]
, (11)

where (8) is used to obtain the last equality and without loss of generality it is assumed that
k ∈ [0, π/1x]. Definingq = 2q̂/(1+ rap) andβ = (1− rap)/(1+ rap), the preceding may
be expressed in the form

qn(t) = eik[n1x−c∗p(k)t ] + βei (k−π/1x)[n1x−c∗n(k−π/1x)t ] . (12)

Herec∗p(k) andc∗n(k− π/1x) are given, respectively, by the positive and negative roots in
(6), and the value ofrap used to evaluateβ is obtained by substitutingc∗p(k)/c into (7). If
−π/1x ≤ k ≤ 0, the preceding expression forqn is modified by replacingk−π/1x with
k+ π/1x.
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FIG. 2. Normalized phase speedsc∗p(k)/c for the positive-root (physical) component (P) andc∗n(k−π/1x)/c
for the negative-root (nonphysical) component (N) of a QFEM eigenmode for the constant-wind-speed advection
equation plotted as a function of wavenumberk. Also shown isβ, the ratio of the amplitude of the negative-root
component to the amplitude of the positive-root component.

According to (12),the eigenmodes of the QFEM approximation to(1) are the superpo-
sition of a wave moving downstream at speed c∗

p and a second nonphysical wave moving
upstream at speed c∗n. Neither the upstream moving wave nor the downstream moving wave
can satisfy (3)–(4) without the simultaneous presence of the second wave, whose amplitude,
relative to the first wave, is determined byβ. Values ofc∗p(k)/c, c∗n(k−π/1x)/c, andβ(k)
are plotted as a function ofk in Fig. 2.

Each of the two waves that compose the QFEM eigenmode is a conventional semi-discrete
Fourier mode with a well-defined phase speed and group velocity. The phase speeds given
by the two roots of (6) are the phase speeds of these individual Fourier modes. No single
phase speed precisely describes the motion of a QFEM eigenmode, although sinceβ is
small for eigenmodes longer than about 41x, well-resolved eigenmodes appear to translate
with almost no change in form at speedc∗p.

The group velocity,c∗g= ∂ω/∂k, for each individual Fourier mode in (12) satisfies

c∗g
c
= ±cosθ

(
2+ 7 cos2 θ

)+ 2
(
2− 3 cos2 θ

)√
10− cos2 θ(

2− cos2 θ
)2√

10− cos2 θ
,

where the positive root is associated with∂ωp/∂k and the negative root with∂ωn/∂k.1

Note thatcgp(k) = cgn(k ± π/1x), since cosθ = −cos(θ ± π), implying that both of the
individual modes in (12) propagate at the same group velocity. Thus, although there is some
ambiguity in the precise determination of the phase speed of a single QFEM eigenmode,
each eigenmode does have a well-defined group velocity. This group velocity is plotted as
a function of wavenumber in Fig. 3.

The data in Figs. 2 and 3 suggest that, in many respects, a QFEM approximation to (1)
yields qualitatively similar results to those obtained with linear finite elements or finite

1The preceding expression forcg is mathematically equivalent to (2.6-52) in [4].
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FIG. 3. Normalized group velocityc∗g/c for the QFEM eigenmodes plotted as a function ofk.

differences: long, well-resolved waves will be treated accurately while disturbances with
wavelengths near 21x will be subject to substantial error. This is supported by many exam-
ples in [4], which show qualitatively similar behaviors in both linear- and quadratic-finite
element approximations to poorly resolved waves. As the numerical resolution improves,
the QFEM can, nevertheless, yield much better solutions to (1) than those obtained using
linear elements [1, 4]. The advantage of the QFEM method seems to be attributable to its low
phase-speed error and relative freedom from numerical dispersion. The phase-speed error
in the downstream moving (physical) component of the QFEM solution is very small, both
for relatively short waves, such as a 31x wave, and in the limit of good spatial resolution,
for which

c∗p
c
≈ 1+ (k1x)4

270
.

The most serious inaccuracies in QFEM approximations to (1) are associated with the
nonphysical upstream propagating mode, the amplitude of which is at least 10% that of
the physical mode for all wavelengths shorter than 41x. Moreover, the amplitude of the
nonphysical mode decays rather slowly with increasing numerical resolution. In the limit
k1x→ 0,

β ≈ (k1x)2

24
,

which is consistent with Hedstrom’s [7] result that unless the initial data are appropri-
ately filtered to remove the backward propagating wave, the truncation error in the QFEM
approximation to (1) is onlyO[(1x)2].

How is the difference in the eigenmode structure of linear- and quadratic-finite-element
approximations to (1) made manifest in practical applications? One example is provided
by the comparison of finite-difference, linear-finite-elements and quadratic-finite-element
solutions to (1) shown in Fig. 4. Numerical solutions were computed on the periodic domain
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FIG. 4. Comparison of solutions to the constant-wind-speed advection equation at (a)t = 10 and (b)t = 10 5
16

:
quadratic finite element (short dashed), linear finite element (solid), fourth-order centered explicit finite difference
(long dashed), and exact (thin dot-dashed). After [1].

0≤ x ≤ 3 subject to the initial condition

ψ(x, 0) =
{

1
4(cos(8π(x − 1))+ 1)2 if |x − 1| ≤ 1

8;
0, otherwise.

The wind speed isc = 0.1. The horizontal mesh spacing is1x = 1/32, implying that the
total width of the initial spike is 81x, which is sufficiently narrow to reveal short-wavelength
errors without allowing the solution to be completely dominated by very short-wavelength
disturbances. Further numerical details are given in [1].

The solution in the central portion of the domain is shown att = 10 in Fig. 4a, at which
time the peak in the true solution is centered atx = 2. For simplicity, the quadratic-finite-
element solution is plotted as a piecewise-linear function between the nodes. The superiority
of the QFEM result over those obtained using the linear finite element method or using finite
differences is clearly evident.

A distinct difference between the amplitude error in the QFEM solution and the other solu-
tions can be seen by comparing Figs. 4a and 4b. The true solution propagates exactly one grid
interval between the times shown in Figs. 4a and 4b. There are essentially no changes in the
shapes of the linear-finite-element and the finite-difference solutions over this short period of
time, but the peak in the QFEM solution is noticeably damped. This damping is followed by
reamplification as the solution translates another1x. The amplitude of the peak in the QFEM
solution continues to oscillate as it moves alternatively over the midpoint and endpoint
nodes. This oscillation is produced by the alternate constructive and destructive superposi-
tion of the pairs of semi-discrete Fourier modes (12) that make up each QFEM eigenmode.

Although the amplitude of the nonphysical component of each QFEM eigenmode remains
small in this linear constant-coefficient test problem, there is no guarantee that it will not be
amplified by wave–wave interactions and contribute to aliasing error in nonlinear problems.
For example, Cullen [2] reports that, in those regions where the solution is smooth, quadratic
elements give worse results than linear elements in FEM approximations to the inviscid
Burgers’ equation.
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