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Eigenmodes for the quadratic-finite-element method (QFEM) are expressed as a
linear combination of two conventional semi-discrete Fourier modes. Each of these
Fourier modes moves at a different phase speed, but both modes have the same group
velocity. This representation of the QFEM eigenmodes clarifies the significance of
the negative phase speeds that naturally arise as part of the conventional analysis.
(© 2000 Academic Press
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1. INTRODUCTION

Finite-element approximations to hyperbolic partial differential equations usually emp
piecewise linear elements. The use of piecewise quadratics and higher-order element
been discouraged by their algorithmic complexity and by confusion about the susceptib
of such methods to errors in the smallest scales resolvable on the numerical mesh. This
attempts to clarify some of the confusion involving the wave-propagation characteris
of solutions to semi-discrete quadratic-finite-element approximations to the one-way w
equation
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b -7 — 1
ot + ax 0 @)
on the periodic domair € [0, L].
As in [1], let the x-dependence of the solution to (1) be approximated by quadra

Lagrange interpolating polynomials such that
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Hereg$ is an “endpoint” expansion function defined as

IX = Xj| 1/X—X%j\2 .
P(X) = 1-37%¢ +§( ij) ) if [Xx — Xj| < 2Ax,
J 0, otherwise

@ is the “midpoint” expansion function

¢m(X) = (X7A>>((j71)(2_ X7A§71)7 if |X—Xj| < AX,
l 0, otherwise
andx; = jAxfor j =0,1,...,2N. The standard Galerkin finite-element approximatio

to (1) yields two families of equations for the evolution of the expansion coefficients. T
equations centered at the endpoint nodes are

—aj_2+2bj_1+83j +2bj+1 —a,-+2 +C<bj+l — bj_l _ aj42 —3j2

=0, (3
10 AX 4AX ) - G

whereas those centered on the midpoints are

a1+ 8by + & —a,
,_1+ 8b, + e+1+c<ae+1 e1>:0'

4
10 2AX “)

In the preceding, the indices @andb are periodic with period ® such that
dN = o, bony1 = b
As is widely appreciated, no single semi-discrete Fourier mode of the §g(in =
e kiax—ob) will simultaneously satisfy (3) and (4). The solution for the nodal values ma
however, be expressed in the form
a-J (t) — eik(jAX—C*t) b{ (t) — raeik(ZAX—C*t)’ (5)
wherer, is the ratio of the amplitude at a midpoint node to the amplitude at an endpc

node and, loosely speaking},is a phase speed [1-4]. L&t kAX, and substitute (5) into
(3) and (4) to obtain

1 (o . .
5(8 —2c0SP + 4r,cosh)c* — 5(4ra sing —sin®) =0
and
1 (o]
—(cosf + 4ry)c* — —sind = 0.
5( + 4ry) P

Solutions to this system of two equations in the two unknogfrendr, may be expressed
in the form

c* sind

z 7 (_ ; 1/2
- 9(1+Sin29)( 2cosd £ (9 + sirf 0)*/?) (6)
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FIG. 1. Normalized phase speet)/c and amplitude ratia,, plotted as a function of horizontal wavenumber
for the positive (P) and negative (N) roots of (6).

and

1/ _c sind
fa=-(5——— —cosf |. 7
a 4( ct 6 > %

The relative phase speetl/c and the corresponding valuesrgfare plotted as a function
of horizontal wavenumber in Fig. 1.

Two difficulties arise in connection with the interpretation of these results. The first, whi
misled this author [1] as well as previous researchers [5, 6], is the apparent presence o
distinct sets of solutions, “physical” and “computational” modes associated, respectiv
with the positive and negative roots in (6). A more correct description was provided
Gresho and Lee [3] (see also [4]), who recognized that only a single set of modes is reqt
to span the solution space defined by the linear system of ordinary differential equat
(3)—(4). Unfortunately, [3, 4] also incorrectly suggest that those modes associated \
the negative root can be dismissed as extraneous. An essentially correct interpretatior
offered by Cullen [2], who recognized that none of the solutions is extraneous, because
set of solutions given by the positive root in (6) is identical to the set of solutions given
the negative root.

As a preliminary step to the subsequent analysis, we derive the relation betweer
two sets of solutions stated in [2, 3]. Let those quantities related to the positive roo
(6) be denoted by a subscript p and those related to the negative root be denoted
subscript n. Also letv* =kc* be the frequency of the quadratic-finite-element-metho
(QFEM) solution. Elementary trigonometric identities imply that ko [0, 7 /AX], i.e.,
for the positive wavenumbers resolvable on the numerical grid,

wp(K) = wp(k — 7 /AX) and  ra (k) = —ra (K —7/AX), (8)
and fork € [—m/AX, 0],

w;(k) = wp(K+ m/AX) and ra,(K) = —rg (kK + 7/AX). 9)
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Now consider a negative-root mode with endpoint valagsind midpoint values,.
Consistent with (2), the indicgjsare even and are odd. Using (8),

a = @l [(k=m/A%) | Ax—oj (k—m/Ax)t] _ (_1)jeiijxefiw;(k)t _ ei[ijx—w;(k)t]’
and

b{ — ran(k _ n/AX)ei[(k—?T/AX)EAX—a):(k—Tr/AX)t]
— _rap(k)(_l)feikKAXe—iw*p(k)t

— rap(k)el [ke Ax—w*p(K)t] ,

which demonstrates that fkte [0, 7/ AX] the negative-root mode with wavenumlier /
Ax isidentical to the positive-root mode with wavenumbkeimilarly, fork € [—z /AX, 0],
the negative-root mode with wavenumibef 7/ Ax is identical to the positive-root mode
with wavenumbek.

We now arrive at the second difficulty in interpreting our results: How can both of t
phase speeds given by the two curves in Fig. 1 simultaneously describe the behavi
individual solutions to (3)—(4)? The answer lies in the fact that solutions of the form |
are not conventional semi-discrete Fourier modes that propagate without changing s
between each pair of adjacent nodes. Instead, (5) is a semi-discrete approximation
function of the formg(x)e ®*—*Y where the factog(x) is introduced to account for the
extra spatial dependence associated with the midpoint-node coeffigient

The reason that two nonspurious phase speeds are obtained from (6) can be made
apparent by reexpressing the QFEM eigenmodes as the sum aforventionalsemi-
discrete Fourier modes traveling at different speeds and moving in opposite directions
a first step, (5) is written in the alternative form

Gn(t) = %[(l+ ra) + (=111 — ry)] g knax—er®on n=0,1,...,2N.  (10)

Even values oh give the nodal values;; odd values yield thé,. Then for a positive-root
eigenmode,

R 1+r ' . 1-—r . .
qn(t) — < 5 ap)e|[knAx—a)p(k)t] + ( 5 af:)el[(k—yr/Ax)nAx—wp(k)t]

— 1+r8n ei[knAxfw;(k)t] + 1- M ei[(kfn/Ax)nAx—w,’fl(kfn/Ax)t] (11)
2 1+r, ’

where (8) is used to obtain the last equality and without loss of generality it is assumed
k € [0, 7/AX]. Definingq = 24/(1+r4) andp = (1 —ry)/(1+r4), the preceding may
be expressed in the form

Qn(t) — eik[nAxfc;(k)t] + ’Bei(kfn/AX)[nAxfcz(kfn/Ax)t]. (12)

Herecy (k) andcy (k — 7/ Ax) are given, respectively, by the positive and negative roots
(6), and the value af,, used to evaluatg is obtained by substituting;(k)/c into (7). If
—m/AX < k < 0, the preceding expression fgr is modified by replacing — 7/ Ax with
k+ 7/AX.
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FIG.2. Normalized phase speedgk)/c for the positive-root (physical) component (P) aitk — 7/ Ax)/c
for the negative-root (nonphysical) component (N) of a QFEM eigenmode for the constant-wind-speed adve
equation plotted as a function of wavenumkeAlso shown is8, the ratio of the amplitude of the negative-root
component to the amplitude of the positive-root component.

According to (12)the eigenmodes of the QFEM approximatior{(1pare the superpo-
sition of a wave moving downstream at spepdied a second nonphysical wave moving
upstream at speed cNeither the upstream moving wave nor the downstream moving wa
can satisfy (3)—(4) without the simultaneous presence of the second wave, whose ampli
relative to the first wave, is determined ByValues ofc;(k)/c, ci(k—m/Ax)/c, andB (k)
are plotted as a function &fin Fig. 2.

Each of the two waves that compose the QFEM eigenmode is a conventional semi-dis
Fourier mode with a well-defined phase speed and group velocity. The phase speeds |
by the two roots of (6) are the phase speeds of these individual Fourier modes. No si
phase speed precisely describes the motion of a QFEM eigenmode, althouglg nce
small for eigenmodes longer than abonbd well-resolved eigenmodes appear to translat
with almost no change in form at speef

The group velocitycg = dw/dk, for each individual Fourier mode in (12) satisfies

5 +c0s9(2+ 7cog6) + 2(2—3cog6)v/10— coF o
c (2- co§9)2\/10— co2 6 ’

where the positive root is associated withy,/dk and the negative root withwn/ok.
Note thatcy, (k) = cq,(k & 7/ AX), since co® = —cog6 =+ ), implying that both of the
individual modes in (12) propagate at the same group velocity. Thus, although thereis s
ambiguity in the precise determination of the phase speed of a single QFEM eigenm
each eigenmode does have a well-defined group velocity. This group velocity is plottel
a function of wavenumber in Fig. 3.

The data in Figs. 2 and 3 suggest that, in many respects, a QFEM approximation tc
yields qualitatively similar results to those obtained with linear finite elements or fini

The preceding expression faf is mathematically equivalent to (2.6-52) in [4].
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FIG.3. Normalized group velocitg;/c for the QFEM eigenmodes plotted as a functiorkof

differences: long, well-resolved waves will be treated accurately while disturbances v
wavelengths near®x will be subject to substantial error. This is supported by many exar
ples in [4], which show qualitatively similar behaviors in both linear- and quadratic-fini
element approximations to poorly resolved waves. As the numerical resolution impro
the QFEM can, nevertheless, yield much better solutions to (1) than those obtained L
linear elements [1, 4]. The advantage of the QFEM method seems to be attributable to its
phase-speed error and relative freedom from numerical dispersion. The phase-speed
in the downstream moving (physical) component of the QFEM solution is very small, b
for relatively short waves, such as A8 wave, and in the limit of good spatial resolution,
for which

ch 14 (kAax)*

c 270 °

The most serious inaccuracies in QFEM approximations to (1) are associated with
nonphysical upstream propagating mode, the amplitude of which is at least 10% the
the physical mode for all wavelengths shorter thaxx4Moreover, the amplitude of the
nonphysical mode decays rather slowly with increasing numerical resolution. In the li
kAx — 0,

_ (kAx)?

B T

which is consistent with Hedstrom’s [7] result that unless the initial data are approj
ately filtered to remove the backward propagating wave, the truncation error in the QF
approximation to (1) is onlYD[(AX)?].

How is the difference in the eigenmode structure of linear- and quadratic-finite-elenr
approximations to (1) made manifest in practical applications? One example is provi
by the comparison of finite-difference, linear-finite-elements and quadratic-finite-elem
solutions to (1) shown in Fig. 4. Numerical solutions were computed on the periodic dorr
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FIG.4. Comparison of solutions to the constant-wind-speed advection equatiot at (&) and (b} = 101%:
guadratic finite element (short dashed), linear finite element (solid), fourth-order centered explicit finite differe
(long dashed), and exact (thin dot-dashed). After [1].

0 < x < 3 subject to the initial condition

jcosBr(x—1)+1?  ifx—1<§;

¥(x,0 = { .
0, otherwise

The wind speed is = 0.1. The horizontal mesh spacingds< = 1/32, implying that the

total width of the initial spike is 8. x, which is sufficiently narrow to reveal short-wavelength

errors without allowing the solution to be completely dominated by very short-wavelen

disturbances. Further numerical details are given in [1].

The solution in the central portion of the domain is showh=2t10 in Fig. 4a, at which
time the peak in the true solution is centerea at 2. For simplicity, the quadratic-finite-
element solution is plotted as a piecewise-linear function between the nodes. The super;
of the QFEM result over those obtained using the linear finite element method or using fi
differences is clearly evident.

Adistinct difference between the amplitude error in the QFEM solution and the other sc
tions can be seen by comparing Figs. 4aand 4b. The true solution propagates exactly on
interval between the times shown in Figs. 4a and 4b. There are essentially no changes |
shapes of the linear-finite-element and the finite-difference solutions over this short peric
time, but the peak in the QFEM solution is noticeably damped. This damping is followed
reamplification as the solution translates anotkerThe amplitude of the peak in the QFEM
solution continues to oscillate as it moves alternatively over the midpoint and endp
nodes. This oscillation is produced by the alternate constructive and destructive super,
tion of the pairs of semi-discrete Fourier modes (12) that make up each QFEM eigenm

Although the amplitude of the nonphysical component of each QFEM eigenmode rem:
small in this linear constant-coefficient test problem, there is no guarantee that it will no
amplified by wave—wave interactions and contribute to aliasing error in nonlinear proble
For example, Cullen [2] reports that, in those regions where the solution is smooth, quad
elements give worse results than linear elements in FEM approximations to the invi
Burgers’ equation.



WAVE PROPAGATION IN QUADRATIC-FINITE-ELEMENT APPROXIMATIONS 455

ACKNOWLEDGMENTS

This research was stimulated by several productive conversations with Phil Gresho. The manuscript
improved by comments from Alan Hindmarsh. This research was sponsored by NSF Grant ATM-9817728.

REFERENCES

1. D. R. DurranNumerical Methods for Wave Equations in Geophysical Fluid Dyna(@ipsnger-Verlag, New
York, 1999).

. M. J. P. Cullen). Comput. Phys15, 221 (1982).
. P. M. Gresho and R. L. Let. J. Numer. Methods Fluidg 1357 (1987).
. P. M. Gresho and R. L. Safhcompressible Flow and the Finite Element Mett{ddley, New York, 1998).

. P. M. Gresho, R. L. Lee, and R. L. Sani, Advection-dominated flows with emphasis on the consequenc
mass lumping, ifFinite Elements in Fluid¢Wiley, New York, 1978), Vol. 3, p. 335.

6. B. Cathers and B. A. O’Conndnt. J. Numer. Methods Fluids, 201 (1985).
7. G. HedstromJ. Comput. Phys30, 222 (1979).

a b~ 0N



	1. INTRODUCTION
	FIG. 1.
	FIG. 2.
	FIG. 3.
	FIG. 4.

	ACKNOWLEDGMENTS
	REFERENCES

